
Set Pruning Segment Trees for Packet Classification 
Yeim-Kuan Chang and Hsin-Mao Chen 

Department of Computer Science and Information Engineering, 
National Cheng Kung University, 

Tainan, Taiwan 
{ykchang, P76984500}@mail.ncku.edu.tw 

 
Abstract—Nowadays, multi-field packet classification is one of the 
most important technologies to support various services in next 
generation routers. In this paper, we propose a segment tree 
based parallel SRAM-based pipelined architecture called Set 
Pruning Segment Trees (SPST) for multi-dimensional packet 
classification. For solving the memory blowup problem, a 
grouping scheme called Partition by Length (PL) is used to 
reduce the rule duplications in SPST. Additionally, we also 
propose an optimization called Set Pruning Multi-way Segment 
Trees (SPMST) to reduce the tree level and hardware cost. The 
key feature of our proposed architecture is that memory 
consumption is reduced significantly regardless of the 
characteristics of various rule tables. The proposed pipelined 
architecture can achieve a throughput of 89.4 Gbps for minimum 
sized packets with dual port memory on Xilinx Virtex-5 FPGA 
device. 

Keywords-segment tree; elementary interval; pipeline; FPGA; 
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I.  INTRODUCTION 
The workload of next generation routers increases as the 

various services on the Internet grow rapidly. These Internet 
services include virtual private network (VPN), quality of 
service (QoS), network security, and firewall. Packet 
classification is the core functionality in the high-performance 
routers [17] for supporting these Internet services. It is always a 
challenge to develop a high-speed packet classification 
algorithm in routers to sustain the ever-growing Internet traffic 
required by these Internet services. To match a rule, packet 
classification needs to compare multiple header values of each 
incoming packet with the field values of all the rules in the rule 
table. In a common rule table, there are five fields that are 
source and destination IP address fields in the form of prefixes 
of variable length, source and destination port fields in the form 
of ranges of consecutive numbers, and protocol field in the 
form of singleton value. 

The packet classification approaches can be classified into 
software and hardware based schemes. The software-based 
solutions include decision schemes such as Hierarchical tries 
[14], Grid of tries [14], Set Pruning tries [14], HiCuts [6], and 
HyperCuts [15]. Dynamic Grid of Segment Trees (DGST) [4] 
is proposed to allow dynamic insertions and deletions of ranges. 
Hierarchical tries is a multi-dimensional binary tries. The 
disadvantage of Hierarchical tries is that search operations can 
not be completed without backtracks. Set pruning tries solves 
the backtracking problem by duplicating rules. Unfortunately, 
duplicating rules cause the memory blowup problem. Grid of 
tries is another way of solving the backtracking problem for 2-

dimensional classification. The key feature is to use pre-
computations to set switch pointers pointing to the part of data 
structure containing the matched rules. It is effective in dealing 
with prefixes, but it is not suitable for other fields such as port 
ranges. To make Grid of Trie work for rules containing range 
fields, all the range field values must be converted to prefixes 
first. However, Prefixes are limited ranges and the size is a 
power of two. In the worst case, a W-bit range needs to be 
converted to 2W – 2 prefixes. Thus, converting ranges to 
prefixes becomes another source of suplications. HiCuts, 
HyperCuts and DGST are suitable for range fields, but those 
memory usages are too large to implement on Field 
Programmable Gate Array (FPGA) easily. 

 The hardware-based solutions include static random access 
memory (SRAM) architecture such as Improved HyperCuts [9], 
Set Pruning Multi-Bit Trie (SPMT) [3], and Power Saved 
HyperCuts [11]. The hash-based schemes are Dual Stage 
Bloom Filter Classification (2sBFCE) [12], Bloom Based 
Packet Classification (B2PC) [13], and Nest Level Tuple 
Merging and Cross-product (NTLMC) [5], etc. There are 
schemes which are based on ternary content addressable 
memories (TCAM) such as BV-TCAM [16]. Most TCAM-
based schemes are like the binary trie based schemes which are 
not suitable for range fields. Moreover, the power consumption 
is a pending issue. The memory usage of hash-based schemes 
is efficient, but the throughput is limited due to resolve false 
positives problems. It is important to pay attention to Improved 
HyperCuts and SPMT which have higher throughputs and both 
of them are trie-based pipelined architectures. Unfortunately, 
those schemes have used all the SRAMs for implementing 
large rule table such as ACL1_10K on FPGA. They could not 
support all the large rule tables. On the other hand, there are 
some problems on traditional trie-based pipelined architecture. 
The size of the memory in each stage is unbalanced and the 
utilization rate of SRAMs in some pipeline stages is inefficient. 
For the above problem, some IP Lookup trie-based pipelined 
architectures have been proposed for memory balancing in [8] 
and [10]. 

In order to solve the problem caused by range fields and 
achieve a high throughput, we propose a packet classification 
scheme called Set Pruning Segment Trees (SPST) in this paper. 
SPST is very suitable for the pipelined architecture which is a 
hierarchical scheme based on segment tree by replacing the 
binary trie in set pruning tries with segment trees. We also use 
the rule partitioning scheme, Partition by Length (PL), which 
divide rules into subgroups by prefix lengths to reduce the rule 
duplications in SPST. Each SPST is built for each subgroup 
and all the SPSTs are searched in parallel to obtain the best 
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matched rule. In order to further reduce the hardware cost in 
our pipelined architecture, we will also propose a Set Pruning 
Multiway Segment Trees to merge the stages using small 
amount memory. 

The rest of the paper is organized as follows. In section 2, 
the background of packet classification is introduced. In section 
3, we review the related work on software and hardware based 
schemes. The section 4 describes our proposed scheme. Section 
5 describes the implementation of our proposed design. Section 
6 is our optimization. Section 7 presents the results of the 
comparisons. And finally, the Section 8 is the conclusion. 

II. BACKGROUND  
In the general packet classification problem, query packets 

are classified by searching the rule table to determine an action 
(e.g., acceptance or denial) to be applied on the packets. Each 
rule R contains a number of fields as well as the priority and 
the associated action. Traditionally, the rule contains five fields: 
the source and destination address which are variable length 
prefixes, source and destination port which are range numbers, 
and protocol which is explicit value. When a packet P matches 
a rule R, it means that the all header fields of rule R matches all 
corresponding fields of the incoming packet P. It is possible 
that a packet may match multiple rules. And one of the packet 
classification problems is to determine the highest priority rule 
which called best match rule. Table I is a sample 5-field rule 
table. If the field values of the incoming packet (SA, DA, SP, 

DP, Protocol) = (00000, 10000, 21, 21, UDP), the matched 
rules from Table I are R1 and R8. The priority of R1 is higher 
than R8. So the best match rule is R1. 

III. RELATED WORK 
In this section we review the software based scheme called 

Dynamic Grid of Segment Tree. On the other hand, we also 
review the hardware based scheme called Set Pruning Multi-
Bit Trie and the important issues of trie-based pipelined 
architecture. 

A. Dynamic Grid of Segment Tree 
Dynamic Segment Tree (DST) [2] is proposed to solve the 

IP lookup problem caused by range fields and allow dynamic 
insertions and deletions of ranges. DST is built from the 
distinct endpoints of ranges which obtains by minus-1 endpoint 
scheme. Table II is the minus-1 endpoint of SA and DA in 
Table I. The interval between two endpoints is called 
elementary intervals (EIs) [1]. Each node in DST covers a 
number of consecutive EIs. For examples, each leaf nodes 
represents an EI, and the parent node of leaf nodes represents 
the EIs of the leaf nodes. DST improves the traditional 
Segment Tree by supporting dynamic routing tables. 

Dynamic Grid of Segment Tree (DGST) [4] that is similar 
to Grid of Trie replaces the binary tries in Grid of Trie by DSTs 
to inherit advantage of reducing memory usage and avoiding 
backtracking. There are switch pointers and extended pointers 
to speed up the search operations by finding potential match 
rules in DGST. The nodes also contain dimension pointers to 
pointer to next dimensional DST. In DST, each node 
distinguishes three intervals which are left interval, right 
interval, and union of right and left intervals (called canonical 
set C) by the key of the node. Figure 1 is a 2-dimension 
example of DGST without extended pointer built according to 
Table II. To find the best match rule, the trace of an incoming 
packet with (SA, DA) = (6, 16) is m-n-x-y-R7-R1. The matched 
rules are R1 and R7, and the best matched rule is R1. Because 

m

Figure 1. A possible 2D DGST without extended pointer
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Rule SA DA SP DP PORT PRIORITY ACTION

R1 0* 10* [0:31] [0:31] TCP 1 Accept

R2 00* 11* [0:15] [21:21] TCP 2 Accept

R3 011* 00* [16:23] [20:22] TCP 3 Accept

R4 10* 1* [31:31] [0:15] TCP 4 Accept

R5 * 00* [16:31] [5:8] TCP 5 Accept

R6 0* 01* [15:16] [10:15] UDP 6 Deny 

R7 00* 10* [0:7] [16:31] TCP 7 Deny 

R8 0* * [0:31] [0:31] UDP 8 Deny 

TABLE I. A SAMPLE RULE TABLE

 

SA DA 
Rule 

Prefix Start Finsh Prefix Start Finsh 

R1 0* - 15 10* 15 23 

R2 00* - 7 11* 23 31 

R3 011* 11 15 00* - 7 

R4 10* 15 23 1* 15 31 

R5 * 0 31 00* - 7 

R6 0* 0 15 01* 7 15 

R7 00* 0 7 10* 15 23 

R8 0* 0 15 * - 31 

TABLE II. MINUS – 1 ENDPOINTS OF SA AND DA IN TABLE I
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of the feature of Grid of Tries, DGST extended to 3 or more 
dimensions will also need backtracking. 

B.  Set Pruning Multi-Bit Trie 
In [3], the authors proposed a trie-based SRAM pipelined 

architecture for packet classification. In order to solve the 
memory blowup problem caused by rule duplications, the 
authors proposed two rule grouping schemes called Partition 
by Wildcards (PW) and Partition by Length (PL). PW divides 
rule table into 16 subgroups. Those are classified according to 
the wildcards values in SA, DA, SP, and DP fields (excluding 
protocol field). When most of prefixes in the rule table are 
short (say length = 1 or 2), most subgroups will be empty and 
the rule duplication is still high. Thus, scheme PL deals with 
the rule duplication of short prefixes. PL divides rule table into 
k subgroups by select k – 1 different prefix lengths in the first 
field. The prefix lengths are selected by computing the 
Duplicating Cost (DC) of the rule table. The set of k prefix 
lengths is selected if it produces the smallest DC. Because the 
traditional multi-bit trie is suitable for the IP Lookup pipelined 
architecture [7], the authors developed a multi-bit scheme 
called Set Pruning Multi-Bit Trie (SPMT) to share nodes for 
reducing the number of pipeline stages and avoiding the 
redundant data structures. 

C. Balance The Memory 
As shown in Figure 2, each trie level is assigned to a 

different pipeline stage in traditional trie-based pipelined 
architecture. However, there is only one node in first stage and 
the stage containing the maximum number of nodes depends on 
the rule table. The hardware clock rate is determined by the 
largest stage and it’s called the unbalanced memory problem. 
In [10], the authors proposed two different schemes to 
incrementally update and balance memory usage for IP Lookup 
trie-based pipelined architecture. The authors use the No 
Operation Performed (NOP) instructions to make the nodes in 
the same trie level map onto different pipeline stage for 
balancing memory. For dealing with the route updates, the 
traditional pipelined engines need re-map the entire trie onto 
the pipeline. The update cost is high and the authors proposed 
two trade-off schemes to reduce the cost of updating the 
pipeline based on only mapping the newly inserted nodes onto 
the pipeline. Additionally, the authors also proposed another 

pipelined architecture that assigns few stages to be the external 
stages for supporting large rule tables. 

IV. PROPOSED SCHEME 
In [4], the authors solve the range problem in multi-

dimensional packet classification. There is a problem that the 
DGST’s data structure is too complex to implement in FPGA 
effectively. Another problem is that DGST will cause 
backtrack problem in D-dimension DGST (D>2) and thus the 
traditional trie-based pipelined architecture is not suitable. 
Another scheme called SPMT is a very fast pipelined 
architecture and solves the memory blowup problem for being 
implemented on FPGA. Because the ranges need to covert into 
a number of prefixes and the trie level may be the maximum. 
Therefore, there are a large number of pipeline stages and 
usage of memory. In this section, we propose a new scheme in 
the subsequent two subsections to solve the above problems. 

1) Set Pruning Segment Trees (SPST): SPST is a segment 
tree based data structure which is suitable for solving 5-
dimensional packet classification problem. SPST is also 
the Set Pruning trie based data structure which can be 
implemented in FPGA easily. 

2) Grouping Set Pruning Segment Tree: In SPST, there is 
also rule duplicating problem. We use the Partition by 
Length to reduce the memory usage. But we do not reduce 
the rule duplication as much as possible. There is a trade-
off between memories consumption and hardware cost. 

 

A. Set Pruning Segment Trees (SPST) 
In SPST, each node contains the key (endpoint of range 

based on minus-1 endpoint scheme), two link pointers (pointer 
to left and right children), and the link type (indicating that the 
pointer children are the same dimension or next dimension). 
Constructing SPST is similar to the Set Pruning Trie 
construction. In the first step, the first-dimensional segment 
tree is constructed. The endpoints are used to create the 
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Figure 2. A traditional binary trie-based pipeline 
architecture according to SA of Table I. 

Dimensional pointer

7

11 

23

1515

7 23 

R5 R6 R1 R2

15

7 23

R5 R6 R1 R8

15 

7 23

R3 R6 R1 R8 

15

7

R5 

R4

15

R4

m

n o

p
x 

y z 

Figure 3. A possible 2D SPST according to Table I

690



elementary intervals. Then, the Segment Tree is constructed by 
using the most balancing Segment Tree to minimize the tree 
level and duplicating all the rules to the leaf nodes. After 
constructing the first dimensional Segment Tree, we repeat the 
above steps and will obtain the 5-dimensional SPST. In the last 
dimensional Segment Tree, the leaf nodes only store the 
highest priority rule of the best match rule. Figure 2 shows an 
example of 2-dimensional SPST built according to source and 
destination addresses in Table I. The search in SPST is from 
root to leaf node. Each node compares the key and the 
corresponding fields of the query packet.  If the key is small 
than or equal to the corresponding field value of the packet, it 
travels to the left child or vice versa. Repeating the above step 
to the leaf node will find the best match rule. For the example 
in Figure 3, if the header values of the incoming packet is (SA, 
DA) = (6, 16), the trace is m-n-x-z-R1. And the best match rule 
is R1. 

B. Grouping Set Pruning Segment Tree 
Because all the rules are duplicated into the leaf nodes, the 

search process is simpler. But as shown in Figure 3, the 
memory blowup problem is in existence. In order to reduce the 
duplicated rules, the partition scheme from [3] is employed. 
We compare the efficiency of Partition by Wildcards (PW) and 
Partition by length (PL) in our scheme. Table II shows the node 
numbers of SPST divided by PW and PL. Those three different 
type tables are generated by ClassBench [18]. By PW, the 
SPST is divided into 16 subgroups some of which are empty. 
In Table III, we can notice that we just divide rule table into 
two subgroups by PL, but the efficiency results are better than 
PW in each table. As a result, we determine to use the PL 
grouping scheme to improve our SPST. Figure 4 is an example 
of 2D PL SPST built according to Table 1. If the header values 
of the incoming packet is also (6, 16), the match rule of Group 
1 is R7 and Group 2 is R1. And the best match rule is R1. 

After choosing the partition scheme, we consider how many 
subgroups are appropriate. In general, we will minimize the 
Duplication Cost (DC) as much as possible. DC is defined as a 

value of additional cost due to duplicate rule when constructing 
a SPST. We calculate the sum of all the rules copy times when 
constructing a SPST.  If the value of DC is small, it means that 
we don’t need waste a lot of additional cost. But in the next 
section we will propose a parallel architecture. It means the 
more groups we divide, the more hardware cost is needed. On 
the other hand, before the rule table is divided up into the 
numbers of the lowest DC groups, the effect of reducing rule 
duplication decreases quickly.  As shown in Table IV, we 
calculate the DC from three rule tables containing 10k rules. In 
ACL1 table, the DC using 3 groups is about 10 thousands less 
than that of using 2 groups. But the difference of DC between 
using 3 groups and 4 groups is less than one hundred. This 
situation is similar in IPC1 table. For the above reasons, we 
determine to trade off between the hardware cost and the 
memory usage. If the DC difference between two groups is not 
over the threshold, we will choose a smaller k to divide the rule 
table into k subgroups in SPST. In addition, For FW2 table, the 
DC of 3 groups is the minimum, so we don’t show the DC that 
uses 4 groups. 

V. HARDWARER IMPLEMENTATION 
In this section, the proposed hardware design is given. We 

design a pipelined and parallel architecture to improve the 
throughput of the SPST groups. About the pipelined 
architecture, each node in SPST is marked as a level according 
the tree level in SPST. Then the nodes with the same level are 
mapped to the same pipeline stage. The nodes in the different 
dimension Segment Tree are not mapped to the same pipeline 
stage. Each query packet searched from the root to the leaf 
nodes is the same as traveling the pipeline architecture stage by 
stage. Figure 5 is our designed pipelined architecture. The 
actions of each pipeline stage are described as follows: 

Duplication Cost 
# of groups

ACL1 IPC1 FW2 

2 27576 28422 13501 

3 17265 27445 12401 

4 17170  12188 

 

TABLE IV. DUPLICATION COST BY PW 

 
Figure 4. A possible PL 2D SPST according to Table I
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Partition by Wildcards Partition by Length Rule 
Table # of nodes # of groups # of nodes # of groups

ACL1_1K 9297 5 7766 2 

ACL1_5K 55034 5 36566 2 

ACL1_10K 226805 5 193876 2 

IPC1_1K 63528 12 26173 2 

IPC1_5K 962500 12 171699 2 

IPC1_10K 57515415 12 225036 2 

FW2_1K 40706 6 15136 2 

FW2_5K 806723 6 80505 2 

FW2_10K 2503799 6 161733 2 

TABLE III. COMPARE THE PW AND PL GROUPING SCHEMES.
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1) The memory of each piepline stage is  accessed to obtain 
the key of the node in this stage, the next address, and the 
next stage NOP signal. 

2) If the import NOP signal is asserted, this stage passes the 
import address to the next stage. The NOP singal is 
deasserted until the next dimensional stage. 

3) If the import NOP signal is deasserted, this stage will 
compare the key and the corresponding field of the query 
packet to determine the address of the next stage. 

4) In the last dimensional pipeline stage, if the NOP signal is 
asserted, this stage will obtain the information of match 
rule and pass it to the last stage. 

 
As shown in Figure 6, we also take advantage of the FPGA 

with massive parallelism to propose a parallel architecture. 
Additionally, FPGA also provides a dual-port Block RAMs. It 
contributes to improve the throughput massively. We construct 
a set of pipelines each of which is built from different SPST 
subgroup. When a query packet is coming, the packet header 
will be imported to all the pipeline sets. Each pipeline will 
execute independently and output the result to the Rule 
Selection module individually. Then the Rule Selection module 
will output the highest priority rule. This rule is the final result. 

VI. OPTIMIZATION 
Memory balancing is a major problem in trie based pipeline 

architecture [10]. In our pipelined architecture, the SRAM in 
each pipeline is unbalance. And the clock rate of the hardware 
is determined by the pipeline with the largest SRAM. For the 
above reason, we propose an optimization scheme called Set 
Pruning Multiway Segment Trees (SPMST) to combine the 
stages with few nodes for reducing the trie level and hardware 
cost in our pipelined architecture. We combine the stages in the 
first dimension of SPMST and the combined SRAMs would 
not be larger than the largest SRAM in SPST. In SPMST, the 
node and the children nodes are combined to form a multiway 
node. The data structure of SPMST is similar to SPST. Each 

node contains the key set, the corresponding link pointers and 
link type. Figure 7 is a possible 2D SPMST which is built from 
Table II. Compared with Figure 3, the tree level of first 
dimension decreases. 

VII. PERFORMANCE 
In this section, we present the performance results of our 

proposed scheme and other schemes on memory, hardware cost 
and throughput. We implement our scheme by using 4-way 
Segment Tree in the first dimensional Segment Tree. The node 
size of original node is 54 bits which needs 3 Block RAMs and 
the 4-way node is 108 bits which needs 6 Block RAMs. The 
implementation result of pipeline stages in first dimension 
decreases to half of the pipeline stages needed in the original 
architecture. 

The memory performance of our proposed scheme and 
without partition is shown in Table V. The rule tables are 
obtained from ClassBench [18] and three real-life rule tables. 
Compared with our scheme using no partitioning, it shows that 
partition scheme is effective on the data structure we proposed. 
The memory usage is reduced effectively. Based on our results, 
our scheme can save a lot of memory regardless of the 
characteristics of the rule table. The memory usage of each rule 
table is small enough to fit in the Block RAM of FPGA. 
Furthermore, the highest level in ACL_10K is 19, in FW2_10K 
is 17, and in IPC1_10K is 24. It means that our proposed 
pipeline stages are equal to or less than the traditional IP 
lookup trie-based pipelined architecture. Additionally, 
ACL1_10K and FW2_10K were partitioned into three groups. 
And IPC1_10K was partitioned into four groups. It shows that 
we do not need a lot of parallel pipeline search engines. For the 
above two reasons, we can conclude that our scheme also can 
reduce a large number of hardware cost. We will show the 
detailed results below with other schemes. 

Table VI is the FPGA implementation results. We use 
Xilinx ISE 10.1 development tools to implement our proposed 
scheme on FPGA. In Table VI, there are other methods’ results 
such as Improved HyperCuts proposed in [9] and Set Pruning 
Multi-bit Trie Partition by Wildcards and Length combined 
(SPMT PW and PL) proposed in [3]. For having a fair 
comparison with Improved HyperCuts and SPMT with PW and 

Dimensional pointer

7 11 2315

15

7 23

R5 R6 R1 R8

15

7 23

R3 R6 R1 R8

15

R4

15

7

R5

R4

15

7 23

R5 R6 R1 R2

Figure 7. A possible 2D SPMST according to Table II

Stage k

M
at

ch
 R

ul
e

Pa
ck

et
 H

ea
de

r

Address

NOP

Stage2Stage1 

Match 
Rule 

Address 

NOP

Stage k-1

���� ���� ����

First Dimension Last Dimension 

Figure 5. Pipeline Architecure 

Pa
ck

et
s

Pa
ck

et
 H

ea
de

r
 P

ro
ce

ss
or

 

Pipeline P1 

Pr
io

ri
ty

 
Se

le
ct

io
n 

�
�
�

�
�
�

�
�
�

�
�
�

Figure 6. Parallel Architecure
Th

e 
B

es
t M

at
ch

 R
ul

e

Pipeline P2

Pipeline Pn

692



PL, we also use the same FPGA device, Xilinx Virtex-5 
XCVFX200T [19] with ‘-2’ speed grade, and dual-port 
memory. The three methods’ implementation results are 
obtained by using ACL1_10k rule table. Compared with 
Improved HyperCuts, we can see that our hardware cost is 
lower. The slice utilization is less than twenty percent of 
Improved HyperCuts (33% vs. 6%). The Block RAMs 
utilization is less than one third of Improved HyperCuts (89% 
vs. 28%). And the throughput is also higher than Improved 
HyperCuts (80.23 Gbps vs. 89.4 Gbps). On the other hand, our 
proposed scheme is compared with the SPMT using PW and 
PL partitioning schemes. Although our throughput is lower 

(110.73 Gbps vs. 89.4 Gbps), our hardware cost is lower. Our 
slice utilization is equal to twenty-five percent of SPMT PW 
and PL (24% vs. 6%). And the Block RAMs utilization is also 
less than one third of SPMT PW and PL (94% vs. 28%).  Also, 
according to the above results, these three schemes can achieve 
the throughput of OC-768 but hardware cost and memory 
usage of our proposed scheme are the lowest. As we can see, 
Xilinx Virtex-5 XC5VFX200T is sufficient to support the three 
methods with 10k rules. But Improved HyperCuts and SPMT 
PW and PL have used almost Block RAMs for implementing 
ACL1_10K rule table. The XC5VFX200T is not sufficient to 
support both of them for FW2_10K or IPC1_10K rule tables. 
The memory usage and the Block RAMs of our proposed 
scheme are both small regardless of the type of rule table. Our 
proposed scheme is accurately implemented with the 
XC5VFX200T. 

Table VII compares the throughput of our scheme and other 
schemes. Our proposed scheme is implemented with Xilinx 
Virtex-5 XC5VFX200T and packet size is assumed to be 40 
bytes. We can see that our throughput is better than all the 
schemes except for SPMT PW and PL. But as showd in Table 
V, our slice and Block RAMs utilization are less than SPMT 
PW and PL. 

VIII.  CONCLUSION 
In this paper, we proposed a SRAM-based pipelined 

architecture for packet classification and reducing the memory 
usage and hardware cost for being implemented on FPGA with 
high throughput. First, we proposed a segment tree based data 
structure called Set Pruning Segment Trees which is suitable 
for range fields and mapping onto pipelined architecture. 
Because of the Set Pruning property, we need to solve the 
memory blowup problem caused by rule duplication. We 
partition the rule table into some subgroups by Partition by 
Length grouping scheme to reduce the memory usage and 
trade-off the hardware cost. Finally, we proposed an improved 
data structure called Set Pruning Multiway Segment Trees to 
combine the nodes in the stages using less memory for 
reducing the tree level and hardware cost. We implemented our 
proposed scheme with Xilinx Virtex-5 FPGA. Based on our 
performance experiments, our scheme can achieve 89.4 Gbps 
with dual port memory and support all kind of large rule tables. 

Rule table # of group The  level # of node Total Memory (Kb) No partition Memory (Mb)

ACL1_1K 2 17 6085 255.65 0.49 

ACL1_5K 3 19 27681 960.9102 2.39 

ACL1_10K 3 19 95013 3618 21.07 

IPC1_1K 2 14 12593 398.60 50.06 

IPC1_5K 3 16 66448 2287.943 1746.36 

IPC1_10K 3 17 145464 5017.68 2230.03 

FW2_1K 3 19 18977 597.16 65.24 

FW2_5K 3 19 91813 2941.251 1020.55 

FW2_10K 4 24 141813 5005.68 Overflow 

TABLE V. MEMORY PERFORMANCE OF SPMST

 Improved 
HyperCuts 

SPMT by PW 
and PL SPMST 

# of slices / utilization 10307 / 33% 6854 / 24% 2136 / 6%

# of Block RAMs / 
utilization 407 / 89% 429 / 94% 129 / 28%

Frequency (MHz) 125.4 173.02 139.76 

Throughput (Gbps) 80.23 110.73 89.4 

Approaches # of rules Throughput (Gbps)

SPMT PW and PL 9603 110.73 

SPMT PW 4451 107.16 

MSPST 9603 89.4 

Improved HyperCuts 9603 80.23 

B2PC in ASIC 3300 13.60 

NTLMC 12507 12.16 

Power Saved HyperCuts ����25000 10.24 

BV-TCAM 222 10.00 

2sBFCE 4000 5.86 

TABLE VII. COMPARING THROUGHPUT WITH 
OTHEER METHODS

TABLE VI. HARDWARE RESOURCE COMPARSION
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